1,702 research outputs found

    Recombination coefficients for O II lines in nebular conditions

    Get PDF
    We present the results of a calculation of recombination coefficients for O^{2+} + e^- using an intermediate coupling treatment that fully accounts for the dependence of the distribution of population among the ground levels of O^{2+} on electron density and temperature. The calculation is extended down to low electron temperatures where dielectronic recombination arising from Rydberg states converging on the O^{2+} ground levels is an important process. The data, which consist of emission coefficients for 8889 recombination lines and recombination coefficients for the ground and metastable states of O^+ are in Cases A, B and C, and are organised as a function of the electron temperature and number density, as well as wavelength. An interactive fortran 77 data server is also provided as an accessory for mining the line emission coefficients and obtaining Lagrange interpolated values for any choice of the two variables between the explicitly provided values for any set of wavelengths. Some illustrations of the application of the new data to nebular observations are also provided.Comment: 15 pages, 7 figures, 6 table

    Operational Entanglement Families of Symmetric Mixed N-Qubit States

    Full text link
    We introduce an operational entanglement classification of symmetric mixed states for an arbitrary number of qubits based on stochastic local operations assisted with classical communication (SLOCC operations). We define families of SLOCC entanglement classes successively embedded into each other, we prove that they are of non-zero measure, and we construct witness operators to distinguish them. Moreover, we discuss how arbitrary symmetric mixed states can be realized in the lab via a one-to-one correspondence between well-defined sets of controllable parameters and the corresponding entanglement families.Comment: 6 pages, 2 figures, published version, Phys. Rev. A, in pres

    Impact assessment case study the floating hotel at John Brewer Reef

    Get PDF
    impact assessmentImpact assessment case study the floating hotel at John Brewer Reef

    Improved orbiter waste collection system study

    Get PDF
    Design concepts for improved fecal waste collection both on the space shuttle orbiter and as a precursor for the space station are discussed. Inflight usage problems associated with the existing orbiter waste collection subsystem are considered. A basis was sought for the selection of an optimum waste collection system concept which may ultimately result in the development of an orbiter flight test article for concept verification and subsequent production of new flight hardware. Two concepts were selected for orbiter and are shown in detail. Additionally, one concept selected for application to the space station is presented

    Chemical abundances for Hf 2-2, a planetary nebula with the strongest known heavy element recombination lines

    Get PDF
    We present high quality optical spectroscopic observations of the planetary nebula (PN) Hf 2-2. The spectrum exhibits many prominent optical recombination lines (ORLs) from heavy element ions. Analysis of the H {\sc i} and He {\sc i} recombination spectrum yields an electron temperature of 900\sim 900 K, a factor of ten lower than given by the collisionally excited [O {\sc iii}] forbidden lines. The ionic abundances of heavy elements relative to hydrogen derived from ORLs are about a factor of 70 higher than those deduced from collisionally excited lines (CELs) from the same ions, the largest abundance discrepancy factor (adf) ever measured for a PN. By comparing the observed O {\sc ii} λ\lambda4089/λ\lambda4649 ORL ratio to theoretical value as a function of electron temperature, we show that the O {\sc ii} ORLs arise from ionized regions with an electron temperature of only 630\sim 630 K. The current observations thus provide the strongest evidence that the nebula contains another previously unknown component of cold, high metallicity gas, which is too cool to excite any significant optical or UV CELs and is thus invisible via such lines. The existence of such a plasma component in PNe provides a natural solution to the long-standing dichotomy between nebular plasma diagnostics and abundance determinations using CELs on the one hand and ORLs on the other.Comment: 12 pages, 5 figures, accepted for publication in the Monthly Notices of the Royal Astronomical Societ

    Entanglement Equivalence of NN-qubit Symmetric States

    Full text link
    We study the interconversion of multipartite symmetric NN-qubit states under stochastic local operations and classical communication (SLOCC). We demonstrate that if two symmetric states can be connected with a nonsymmetric invertible local operation (ILO), then they belong necessarily to the separable, W, or GHZ entanglement class, establishing a practical method of discriminating subsets of entanglement classes. Furthermore, we prove that there always exists a symmetric ILO connecting any pair of symmetric NN-qubit states equivalent under SLOCC, simplifying the requirements for experimental implementations of local interconversion of those states.Comment: Minor correction

    Generation of Total Angular Momentum Eigenstates in Remote Qubits

    Full text link
    We propose a scheme enabling the universal coupling of angular momentum of NN remote noninteracting qubits using linear optical tools only. Our system consists of NN single-photon emitters in a Λ\Lambda-configuration that are entangled among their long-lived ground-state qubits through suitably designed measurements of the emitted photons. In this manner, we present an experimentally feasible algorithm that is able to generate any of the 2N2^N symmetric and nonsymmetric total angular momentum eigenstates spanning the Hilbert space of the NN-qubit compound.Comment: 5 pages, 4 figures, improved presentation. Accepted in Physical Review

    Inter-layer Hall effect in double quantum wells subject to in-plane magnetic fields

    Full text link
    We report on a theoretical study of the transport properties of two coupled two-dimensional electron systems subject to in-plane magnetic fields. The charge redistribution in double wells induced by the Lorenz force in crossed electric and magnetic fields has been studied. We have found that the redistribution of the charge and the related inter-layer Hall effect originate in the chirality of diamagnetic currents and give a substantial contribution to the conductivity.Comment: 7 RevTex pages, 4 figures, appendix added and misprint in Eq. (11) correcte
    corecore